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Abstract 

The aim of this article is to provide a critical review of the theories and the model used in the field of 
geometry education research. The article critically discusses van Hiele’s theory, Fischbein’s theory of 
figural concepts, Duval’s theory of figural apprehension, the Spatial Operational Capacity (SOC) model 
by Wessels and van Niekerk, and the Sfard’s commognition theory. The van Hiele’s theory proposed a 
sequential order of development through which the learners construct their understanding of geometry 
concepts. Fischbein’s theory of figural concepts suggested that a geometric figure is always comprised 
of a visible representation and a concept. Duval’s theory of figural apprehension underscored the 
heuristic value of a geometry figure for solving geometry problems. The SOC model by Wessels and van 
Niekerk emphasised the importance of instructional design incorporating a variety of physical and 
mental objects to work with to develop geometry concepts. Finally, the article discusses Sfard’s 
commognition theory that emphasises the communicative function of language in developing geometry 
concepts. There are two major concerns highlighted with respect to these theories and the model. 
Firstly, these theories and model emphasise the development of the two-dimensional geometry concepts, 
neglecting the development of the concepts of three-dimensional geometry. Secondly, these theories and 
the model fail to acknowledge the multilingual context of geometry class. The article aims to highlight 
the dearth of studies that explore the multilingual context of geometry class and calls for future studies 
in this direction.  
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Introduction 

Mathematics has been argued as one of the most powerful subjects that influences an individual’s ways 
of dealing with various spheres (private, social or civil) of his/her life (Anthony & Walshaw, 2007). 
Thus, teaching and learning of mathematics aims to equip the learner with the knowledge and skills 
required to deal with the mathematical demands of everyday life. Developing logical and systematic 
thinking along with flexibility, criticality and creativity is the core of mathematics education (Ministry 
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of Education, 2007). Within mathematics, geometry is one of the two pillars (Atiyah, 2002), algebra as 
the other pillar. Developing a sound understanding of geometry concepts is vital to succeed in 
mathematics (Education Review Office, 2018). The focus of geometry education is to develop concepts 
and skills that enable the learners to make sense of the world around them (Jones & Mooney, 2003).  

According to the New Zealand Curriculum (Ministry of Education, 2007), Measurement and 
Geometry is a strand in the learning area of Mathematics and Statistics. Within this strand, there are four 
sub-strands: measurement, shapes, position and orientation, and transformation. The teaching and 
learning of geometry involves “recognizing and using the properties and symmetries of shapes and 
describing position and movement” (p.26). According to the Programme for International Student 
Assessment (PISA) report (2012), the achievement levels of students in geometry were found to be very 
low in New Zealand (Ministry of Education, 2015). To improve geometry concepts, the cultural 
knowledge of learners provides plentiful opportunities (Anthony & Walshaw, 2007). These reservoirs 
of learners’ cultural knowledge are often accessible only when the learners are provided with a 
supportive environment that appreciates their socio-cultural identities and provides space for their 
language(s). Therefore, acknowledging the diverse context of New Zealand is of utmost importance for 
teaching and learning of geometry.  

New Zealand is a nation of superdiversity1 in terms of ethnicities and the languages of people 
(Spoonley & Bedford, 2012). With the increased rate of immigration in New Zealand (New Zealand 
Immigration, 2018) from various parts of the world, the presence of multiple languages in every domain 
of social life is foreseeable (Statistics New Zealand, 2013). Acknowledging and appreciating the diverse 
language backgrounds of students has been recognised to promote overall positive learners’ identities 
and thus, inspire them to actively engage with their learning process (European Commission, 2015; Lo 
Bianco, Slaughter, & Schapper, 2016). In such a linguistically super diverse nation, it is arguably crucial 
to ponder on the processes through which learners construe their understanding of geometry concepts 
while negotiating meanings of their constructions in a milieu of multiple languages. 

In light of the diverse context of New Zealand, the aim of the present paper is to look at the research 
literature critically on the use of theories and models in geometry education research. The next section 
discusses the Van Hiele (1959) theory, the Fischbein’s theory of figural concepts (1993), the Duval’s 
(1995) theory of figural apprehension, the Spatial Operational Capacity model by Wessels and Van 
Niekerk (2000), and the Sfard’s (2008) commognition theory. The discussion highlights the focus on 
the development of two-dimensional geometry concepts, neglecting the three-dimensional geometry 
concepts. The critical review also draws attention to the dearth of literature concerning the exploration 
of the multilingual context in the field of geometry education research. The article concludes by 
presenting an argument that the multilingual context presents plentiful possibilities for conducting future 
researches.  

Literature review 

This section presents a critical review of the theories and the model that has been used for developing 
an understanding of how learners construct their meanings of geometry concepts. The literature reveals 
that studies situated in the school education context majorly refer to three theories and a model. These 
theories and model include the van Hiele’s (1959/1985) theory, the theory of figural concepts by 
Fischbein (1993), the Duval’s (1995) theory of figural apprehension, the Spatial Operational Capacity 
model by Wessels and van Niekerk (2000), and Sfard’s commognition theory (2008). The intent of this 
section is to provide a brief discussion of these theories with their limitations. 

                                                
1 Vertovec (2007) used the term super-diversity to account for the complex diversities in terms of ethnicities arising because 
of immigration in Britain. Spoonley and Bedford (2012) used the same concept as superdiversity (without hyphen) to explain 
the New Zealand context.   
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Van Hiele’s theory (1959/1985) 

This theory is based on a constructivist approach, largely on the lines of the Piagetian theory of cognitive 
development. Pierre van Hiele and his wife Dina van Hiele developed the sequential theory for 
explaining how learners develop their geometry concepts. The progress of the learners at each level is 
dependent upon their prior experiences, knowledge and mastery at the previous level. The learners 
progress through five sequential thought levels in their developmental trajectories, given their prior 
appropriate instructional experience. Fuys, Geddes, and Tischler (1988) translated the van Hiele theory 
and the levels in English, which have been validated by van Hiele (Van Hiele, 1999). These thought 
levels are stated in Table 1.  

Table 1. Thought levels in Van Hiele’s Theory 
 

 
Level 0: The student identifies names, compares and operates on 
geometric figures (e.g., triangles, angles, intersecting or parallel 
lines) according to their appearance. 
Level 1: The student analyses figures in terms of their components 
and relationships among components and discovers properties/rules 
of a class of shapes empirically (e.g., by folding, measuring, and 
using a grid or diagram).  
Level 2: The student logically interrelates previously discovered 
properties/ rules by giving or following informal arguments.  
Level 3: The student proves theorems deductively and establishes 
interrelationships among networks of theorems.  
Level 4: The student establishes theorems in different postulational 
systems and analyses/compares these systems. 
  

 Note: Adapted from “The van Hiele model of thinking in geometry among adolescents,” by Fuys, D., Geddes, D., & 
 Tischler, R., 1988, Journal for Research in Mathematics Education, Monograph, 3, p. 5. Copyright 1988 by the 
 National Council of Teachers of Mathematics. 

 

According to van Hiele, for each geometric level, there are five phases of learning. These phases of 
learning help the learner to move from one thought level to the next. The first phase of learning is the 
information/inquiry phase. In this phase, the learners elicit information about the objects of study in 
terms of their observations and questions. The teacher and learner engage in a conversation to mark the 
beginning of the next phase. The second phase of learning is guided orientation. This phase of learning 
involves the use of carefully sequenced activities by the teacher to guide the learners’ orientation or 
attention to notice specific features of the geometric structures like similarity and symmetry. The 
explicitation marks the third phase of learning. This phase is concerned with the refined use of 
vocabulary learned in previous phases to express the inherent, implicit structures of objects. Until phase 
three, teacher’s instructions play an important role in providing direction to learners, prompting them to 
notice important features of the structures, and helping them to articulate those observations in 
technical/geometry vocabulary. In the fourth phase of learning, the teacher’s role becomes covert in 
providing the help needed. This is the phase of free orientation. At this stage, students encounter 
multiple yet different tasks to realise the internal structure of objects to resolve these tasks without the 
teacher’s explicit facilitation. Yet the abilities to synthesise different properties to make a unified whole, 
and to make use of various methods to resolve problems are not achieved by this stage. These abilities 
are achieved in the last phase of learning that is the integration phase (Fuys et al., 1988).  
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Van Hiele made use of didactics to focus on the teaching of the structures of geometric objects. 
According to him, the progression from one thought level to another is more reliant upon the instructions 
that the learner receives rather than the learner’s maturity or age. Hence, providing appropriate 
instructions according to the sequenced phases of learning and thought level is of utmost importance. 
There exists a vast literature that supports van Hiele’s theory for its instructional focus (e.g., Sinclair & 
Moss, 2011; Stumbles, 2018).  

In addition to learning phases, van Hiele also emphasised the role of insight in developing geometry 
concepts. A person is said to have an insight if “the person (a) is able to perform in a possibly unfamiliar 
situation; (b) performs competently (correctly and adequately) the acts required by the situation; and (c) 
performs intentionally (deliberately and consciously) a method that resolves the situation” (Hoffer, 
1983, p. 205). In other words, having insight enables the learners to know about their actions in terms 
of what to do, why and when. The van Hiele instructional approach has been integrated with 
technologies within the dynamic geometry environments such as Logo and GeoGebra to promote the 
development of geometry concepts (e.g., Clements, Battista, & Sarama, 2001; Korenova, 2017; 
Venturini & Sinclair, 2017).   

Yet, the theory is not free from drawbacks and criticisms. The theory has been, firstly, criticized for 
emphasising that the development takes place in a sequential manner. Research shows that the same 
student may possess different van Hiele levels for different geometry concepts simultaneously (Battista, 
2009; Bleeker, Stols, & Putten, 2013). With specific concern for the development of shapes and their 
representation, Pyshkalo, Russian psychologist and educator, drew heavily on Van Hiele’s theory to 
develop an instructional plan for primary school learners. Pyshkalo (1968) found that “familiarizing 
second graders with solids enabled them to reach the second level (van Hiele level 1), surpassing the 
progress of seventh graders in the traditional schools” (as cited in Hoffer, 1983, pp. 209-210). A recent 
body of research provides evidence in accordance with Pyshkalo (Bruce & Hawes, 2015; Gagnier, Atit, 
Ormand, & Shipley, 2017; Sinclair & Bruce, 2014) and therefore questions the sequential order of 
thought levels. 

The second criticism of the van Hiele theory is related to the first criticism. Van Hiele developed 
the theory to help students to construct geometry concepts by providing appropriate instructions as per 
the thought levels. However, Ness and Farenga (2007) have criticised the theory by arguing that it is 
very difficult to identify the van Hiele level for a learner. As it has been stated earlier, a learner may be 
at different van Hiele levels for different geometry concepts. 

Thirdly, the studies based on the van Hiele theory attempt to locate the misconceptions about 
geometry concepts at different stages in a diagnostic manner. Therefore, the focus of these studies is to 
suggest the development of remedial material (e.g., Gunčaga, Tkacik, & Žilková, 2017). Such an 
approach does not take account of how the concept is developed, rather it is concerned with what concept 
has been developed.  

Fourthly, the van Hiele theory focuses on the development of concepts of the Euclidean geometry. 
It does not account for any developmental trajectory for non-Euclidean geometries (Guven & Baki, 
2010). The translation of van Hiele task modules and level descriptors in the Brooklyn College project 
(Fuys et al., 1988) clearly mentions rectangular figures, their properties, axioms and other aspects as 
worthy of understanding as part of school geometry. This overemphasis with planar (two-dimensional) 
shapes and related concepts has resulted in confusion regarding diagrams and representation with 
geometry concepts of shapes (Battista, 2009). Irrelevant characteristics of diagrams are often attributed 
to the geometry concept (Clements & Battista, 1992). For example, the narrowness of a triangle is often 
attributed as a reason for not considering it as a triangle (Devichi & Munier, 2013).  

Finally, the van Hiele theory undertakes a limited approach to the role of language in the 
development of geometry concepts. The role of language is restricted in terms of definitions of the 
geometry concepts of sides and angles (Van Hiele, 1999). The theory situates the role of language within 
the issue of disharmony in communicating the features and properties of the geometric structure. 
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Disharmony arises because of misconceptions about the mathematical terms and their meanings. This 
limited understanding of language is concerned with the use of geometry vocabulary, neglecting the 
communicational function of language that fosters meaning constructions of geometry concepts.  

Fischbein’s theory (1993) of figural concepts 

Fischbein (1993) proposed that geometric figures are not solely concepts but they have an intrinsic 
figural nature. That is, a geometric figure is a figure and a concept simultaneously. A figure is a spatial 
sensory representation that is subjected to figural laws (of closure, proximity, boundedness) whereas a 
concept is an abstract idea defined by a set of axiomatic conditions. The interplay of these two types of 
properties of geometric figures results in a conceptual understanding of geometry figures or concepts. 
The geometric figure is conceptualised in a symbiotic relationship of these two aspects, in which “it is 
the figural facet which is the source of invention, while the conceptual side guarantees the rigour and 
the logical consistency of the operations” (Fischbein & Nachlieli, 1998, p. 1195). The interaction 
between the figure and the concept in conceiving the geometrical concept is influenced by the whole 
perception of the figure (Gestalt, whole). A difficulty in conceptualising a geometric figure may arise if 
the figural properties are not in accordance with the conceptual properties of the figure. And this tension 
may give rise to prototypical figural concepts (Fujita, 2012; Hershkowitz, 1990). That is, learners may 
not recognise a rectangular quadrilateral as a parallelogram even though they have knowledge of 
conceptual properties of a parallelogram (Fujita & Jones, 2007; Walcott, Mohr, & Kastberg, 2009).  

The theory considers the conceptual development of geometry concepts as merely cognitive 
concepts with no mention of the role of language in conceptual development. In addition, the studies 
based on Fischbein’s theory of figural concepts have majorly focused on properties of two-dimensional 
shapes, providing no valuable insights for the conceptual development of three-dimensional shapes (e.g., 
Fujita & Jones, 2006; Vodušek & Lipovec, 2014; Walcott et al., 2009). 

Duval’s theory of figural apprehension (1995) 

According to Duval (2017), a given representation can be recognised in several distinctive ways 
depending on the set of rules applied for visual representations. This suggests that to view figures 
geometrically, a set of rules are always present that must be followed to view the given figure in the 
geometric sense (as a geometric shape). As a result, a considerable amount of cognitive leap is required 
to view the figures geometrically as the representations, against their automatic perceptual recognition. 
Therefore, to perceive a figure geometrically, a learner needs to perceive its figural units in different 
dimensions. That is, to recognise a geometric shape as a cube, figural units of the cube (3D), its faces 
(2D), sides (lines, 1D), and the vertices (0D) must be grasped. He argues that it is because of the figural 
units of the higher dimensions that the perceptual recognition of the figural units of the lower dimensions 
are blocked. This breaking up of a figure according to different figural units is the process of dimensional 
deconstruction of shapes. He argues that to learn geometry, one needs to deconstruct dimensionally all 
2D shapes and use the figures as heuristics to understand the representations. For understanding a figure 
in a geometric sense, it must act as a heuristic to evoke cognitive apprehensions (Duval, 1995).  

There are four kinds of cognitive apprehensions: perceptual, sequential, discursive, and operative. 
The perceptual apprehension is concerned with the unconscious integration of the figural organisation 
laws and the pictorial cues that result in a particular visual representation. The sequential apprehension 
is related to the way the representations are deconstructed in terms of its figural units. The process of 
deconstruction of figural units is based on geometry concepts and properties. The discursive 
apprehension informs us about the details of the figure that cannot be determined without additional 
information through speech (written and/or oral). Discursive apprehension works in situations when the 
details of the representations are not clear from the figure. For example, a figure may look like a 
rectangle but the details about its angles, length of sides and feature of parallelism will conclude if it is 
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one or not. The last apprehension is the operative apprehension. Operative apprehensions involve 
operating with the figure in various ways - dividing it into parts to locate shapes, changing the orientation 
of the figure, spatially putting it in other places or in other ways, and/or obtaining an insight to a solution 
of the problem.  

Duval suggested that for a figure to function as a geometric heuristic for solving problems, it must 
evoke a perceptual apprehension and one of the other three cognitive apprehensions. Along with this, 
Duval argued that to recognise any shape, a learner must also be able to distinguish the physical object 
(for example, a cardboard template) from its semiotic representation (geometric figure - rectangle). He 
emphasised the use of sign systems in developing the concept of ‘figures’ and the underlying operations 
that work at different levels. It is this triadic structure among the object (3D), mathematical object (what 
the figure represents, e.g., the shape as a rectangle), and the figure itself (the drawing) that develop the 
understanding of a shape. Hallowell, Okamoto, Romo, and La Joy (2015) found that learners found it 
difficult to relate a plane rectangle and plane triangle figure with the solid cylinder and solid cone. Thus, 
it is not intuitive for young learners to work out these complex relationships among these three aspects 
to deconstruct the dimensionality. There are underlying mechanisms through which the meaning of a 
particular figure is substantiated. 

Interestingly, the studies situated in Duval’s theory of figural apprehension have focused on the 
construction of concepts of 2D shapes, in spite of acknowledging that the objects used are 3D in nature 
(e.g., Gómez-Chacón & Kuzniak, 2015; Tanguay & Venant, 2016; Vendeira & Coutat, 2017). 
Additionally, these studies fail to provide an account on the role of language in mediating the meanings 
of shapes and their representation, while being situated in the multilingual context (e.g., Arıcı & Aslan-
Tutak, 2015; Duroisin & Demeuse, 2015).  

Spatial Operational Capacity Model (2000) 

This model was developed by Wessels and van Niekerk (2000) and it combines the works of 
Yakimanskaya (1991) and van Niekerk (1997) (as mentioned in Sack & van Niekerk, 2009). The spatial 
operational capacity (SOC) model is based on the assumption that learners should be provided with 
ample opportunities, that require them to explore and work with a variety of physical and mental objects 
and their transformation, so as to develop the diverse set of skills required to solve different kinds of 
geometry problems.  

According to the SOC model, there are four categories of variables that contribute to the complexity 
of a visual image. These are perception, dimensionality, transformation, and mobility. The variables of 
perception include a stimulus that can be present as full-scale images, virtual/real images, conventional 
graphic images or iconic images. The dimensionality variables include the aspects of the objects that a 
learner perceives, processes or acts on as part of the whole stimulus that is presented via visual 
information. The third category of variables includes transformations of shapes. These variables focus 
on the cognitive processes that are at work while processing the stimulus visually, while it is transformed 
either positionally, structurally or in both ways. The mobility variable is the fourth variable and is 
concerned with the mobility of the visual stimulus and whether the stimulus is static, semi-dynamic or 
dynamic (Sack & Vazquez, 2016).  

Based on the SOC model, Sack and Vazquez (2016) conducted a study for a period of seven years 
in elementary school. There were 14 fourth graders and 11 third graders. The purpose of the study was 
to explore the development of 2D and 3D geometry concepts. During this study, Geocadabara 
Construction Box dynamic computer interface instructional design was integrated with the other three 
sets of models (that are full-scale models, conventional graphic models, and semiotic models) to address 
the complex nature of teaching and learning in geometry (see Figure 1). The full-scale models (or scaled-
down models) are real objects that can be manipulated by the student. The conventional-graphic models 
represent two-dimensional graphic (2D) representations of the real, three-dimensional (3D) objects. The 
semiotic models are abstract, symbolic representations that bear no resemblance to the actual objects, 
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for example, floor plan diagrams (Sack & van Niekerk, 2009). They argued for developing an 
understanding of geometry concepts, a learner needs to develop competencies in these three different 
representational modes. The instructional plan moves from 3D objects to 2D representations of 3D 
objects and then to 2D representations of two-dimensional objects (an abstract concept).        

Figure 1. Adopted SOC model  

 
Adapted from “A 3D Visualization Teaching-Learning Trajectory for Elementary Grades Children,” by J. Sack 
and I. Vazquez, 2016, p. 7. Copyright 2016 by the J. Sack and I. Vasquez. 
 
 

There were three major findings. Firstly, the learners were not able to visualise the hidden cubes in 
3D structures (made up of unit cubes) as shown in Figure 2. 

Figure 2. Pre-interview figures  

Adapted from “A 3D Visualization Teaching-Learning Trajectory for Elementary Grades Children,” by J. Sack 
and I. Vazquez, 2016, p. 9. Copyright 2016 by J. Sack and I. Vazquez. 

 

Secondly, learners encountered difficulties in expressing the similarities and differences in 3D 
structures made up of unit cubes (see Figure 3). The learners experienced ambiguities in communicating 
and perceiving meanings of terms like horizontal, vertical, etc. (Sack & Vazquez, 2016). 

Figure 3. The seven figures from unit cubes  

 

 
 

Adapted from “A 3D Visualization Teaching-Learning Trajectory for Elementary Grades Children,” by J. Sack 
and I. Vazquez, 2016, p. 14. Copyright 2016 by J. Sack and I. Vazquez 

 



50 Shweta Sharma 

 

Thirdly, they found that perspectives, orientations and positions play a crucial role in determining 
the representations that the learners may build for the 3D models. Accordingly, these aspects influence 
the conceptual development of geometry concepts of 2D and 3D shapes.  

The SOC model underscores the role of language in verbally describing the figures. Yet, the 
processes through which learners may have sailed through the ocean of different cultural meanings 
during conversations associated with shapes, have not been considered, in spite of having a highly 
diverse population. An exploration into the processes through which learners communicated their 
understanding of geometry concepts, while interacting in diverse linguistic settings, was not conducted. 
It may have provided valuable insights on how learners navigate through multiple languages to develop 
their understanding of geometry concepts. The dearth of exploration of multilingual context in the 
process of development of geometry concepts in visual-spatial abilities, is evident. 

Sfard’s commognition theory (2008) 

With specific attention to the role of language in the development of geometry concepts, Sfard’s (2008) 
commognition theory has been widely used to study the communicative role of language (Kaur, 2015; 
Ng & Sinclair, 2015; Wang, 2016). According to Sfard, cognitive and interpersonal communicational 
processes are different manifestations of the same phenomenon. Thus, to understand the cognitive 
processes that enable learners to develop geometry concepts, the communicative processes need to be 
studied. (Sfard & Kieran, 2001). She argued that for communication to be effective, there are two 
conditions, firstly it fulfils its communicative purpose by fulfilling expectations based on intentions and 
secondly the act of communication should have no evidence of a breach. Thus, the effectiveness of the 
communication depends on the harmony between the speaker’s intentions entailed with expectations on 
the one hand, and the expected outcome from the listener, on the other. She argued that an act of 
communication is effective as long as there is no evidence of breach or incongruency between intentions 
and expectations (Sfard & Kieran, 2001). Sfard’s theory analyses communicational aspects of language 
in terms of discourses that are present in a mathematics class. Discourse-based view of language 
attempts to locate the way language operates within social and cultural contexts.  

Based on Sfard’s commognition theory, Kaur (2015) explored the communicational aspect of 
language that mediates the development of geometry concept of triangles with grade 2-3 students. The 
participants were 7 to 8-year-olds. She found that that the discourse regarding the identification of 
triangles moved along the proposed order of discourse, firstly the discourse of visual object recognition, 
secondly the discourse of informal properties, and thirdly the discourse of definitions. Different types 
of routines and words are used at each level of discourse. Kaur explained the communicational features 
of language that mediate the development of geometry concepts, yet the communicational space of 
multilingual context has not been explored. Also, the preoccupation with two-dimensional geometry 
concepts is evident in the studies (e.g., Presmeg, 2016; Wang, 2016) using Sfard’s commognition theory.  

Conclusion 

This article identified major theories and models that reflect the research trend in the field of geometry 
education. The van Hiele theory proposed a sequential developmental order through which the learners 
develop their understanding of geometry concepts. The second theory discussed in this article is the 
Fischbein’s theory of figural concepts. This theory suggests that a geometric figure is always comprised 
of a visible representation and a concept. The interplay of these two aspects defines any geometry figure. 
After the Fischbein’s theory, the article discusses the theory of figural apprehension by Duval. Duval 
underscored the heuristic value of geometry figure for solving geometry problems. He argued that a 
figure functions as a heuristic by eliciting four kinds of cognitive apprehensions. These are perceptual, 
sequential, discursive, and operative apprehensions. He argued that for a figure to perform as a heuristic, 
the figure must evoke perceptually and one of the other three figural apprehensions. Followed by the 
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Duval’s theory, the article reviewed the SOC model for the development of geometry concepts. The 
model emphasised the importance of instructional plan in incorporating a variety of physical and mental 
objects in developing geometry concepts. Finally, the article discusses the Sfard’s commognition theory 
that emphasises the communicational role of language in developing mathematical concepts.  

In all the theories and the model, the preoccupation with the conceptual development of two-
dimensional geometry and its related concepts, is evident. Moreover, the critical review of the literature 
reveals that there is a dearth of studies exploring the multilingual context of geometry classes. Sinclair 
et al. (2016) published a review article focusing on the research contribution since 2008 in the field of 
geometry education. Interestingly, the article fails to mention the complexities arising due to the 
multilingual context of teaching and learning of geometry. The theories fail to acknowledge the 
processes through which learners negotiate their understanding of the geometry concepts while 
interacting with others.  

It is crucial now, to take a step further in the field of language(s) and mathematics to explore the 
dynamic nature of language(s) use that promotes the sense-making process of mathematical concepts in 
a multilingual context. Exploring the multilingual context of geometry class may provide a valuable 
focus of inquiry. In contemporary times, developing a better understanding of how learners navigate 
through the milieu of multiple languages to build their understanding of geometry concepts, is of utmost 
importance. This gap in the literature opens up possibilities for future research. Exploring the 
conversational processes that enable learners to express their understanding of different geometry 
concepts, while negotiating their constructions, may help to gain valuable insights for geometry 
education research. 
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